Bulletin of Electrical Engineering and Informatics
Vol 9, No 3: June 2020

An efficient feature selection algorithm for health care data analysis

Mythily R. (B. S. Abdur Rahman Crescent Institute of Science and Technology)
Aisha Banu.W (B. S. Abdur Rahman Crescent Institute of Science and Technology)
Dinesh Mavaluru (Saudi Electronic University)



Article Info

Publish Date
01 Jun 2020

Abstract

Diabete is a silent killer, which will slowly kill the person if it goes undetected. The existing system which uses F-score method and K-means clustering of checking whether a person has diabetes or not are 100% accurate, and anything which isn't a 100% is not acceptable in the medical field, as it could cost the lives of many people. Our proposed system aims at using some of the best features of the existing algorithms to predict diabetes, and combine these and based on these features; This research work turns them into a novel algorithm, which will be 100% accurate in its prediction. With the surge in technological advancements, we can use data mining to predict when a person would be diagnosed with diabetes. Specifically, we analyze the best features of chi-square algorithm and advanced clustering algorithm (ACA). This research work is done using the Pima Indian Diabetes dataset provided by National Institutes of Diabetes and Digestive and Kidney Diseases. Using classification theorems and methods we can consider different factors like age, BMI, blood pressure and the importance given to these attributes overall, and singles these attributes out, and use them for the prediction of diabetes.

Copyrights © 2020






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...