Bulletin of Electrical Engineering and Informatics
Vol 7, No 3: September 2018

Evaluation of Support Vector Machine and Decision Tree for Emotion Recognition of Malay Folklores

Mastura Md Saad (Universiti Teknologi MARA)
Nursuriati Jamil (Universiti Teknologi MARA)
Raseeda Hamzah (Universiti Teknologi MARA)



Article Info

Publish Date
01 Sep 2018

Abstract

In this paper, the performance of Support Vector Machine (SVM) and Decision Tree (DT) in classifying emotions from Malay folklores is presented. This work is the continuation of our storytelling speech synthesis work to add emotions for a more natural storytelling. A total of 100 documents from children short stories are collected and used as the datasets of the text-based emotion recognition experiment. Term Frequency-Inverse Document Frequency (TF-IDF) is extracted from the text documents and classified using SVM and DT. Four types of common emotions, which are happy, angry, fearful and sad are classified using the two classifiers. Results showed that DT outperformed SVM by more than 22.2% accuracy rate. However, the overall emotion recognition is only at moderate rate suggesting an improvement is needed in future work. The accuracy of the emotion recognition should be improved in future studies by using semantic feature extractors or by incorporating deep learning for classification.

Copyrights © 2018






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...