Bulletin of Electrical Engineering and Informatics
Vol 9, No 2: April 2020

A 28 GHz high efficiency fully integrated 0.18 µm combined CMOS power amplifier using power divider technique for 5G millimeter-wave applications

A. F. Hasan (Universiti Malaysia Perlis)
S. A. Z. Murad (Universiti Malaysia Perlis)
F. A. Bakar (Universiti Malaysia Perlis)
T. Z. A. Zulkifli (Universiti Teknologi Petronas)



Article Info

Publish Date
01 Apr 2020

Abstract

A 28 GHz power amplifier (PA) using CMOS 0.18 µm Silterra process technology for milimeter wave applications is reported. Maximizing the power added efficiency (PAE) and output power are achieved by optimize the circuit with power divider and cascade configuration. In addition, reverse body bias is also employed for realizing excellent PAE and power consumption. A three stage CMOS PA with power combiner is designed and simulated. The simulation results show that the proposed PA consumes 62.56 mW and power gain (S21) of 8.08 dB is achieved at 28 GHz. The PA achieves saturated power (Psat) of 12.62 dBm and maximum PAE of 23.74% with output 1-dB compression point (OP1dB) 10.85 dBm. These results demonstrate the proposed power amplifier architecture is suitable for 5G applications.

Copyrights © 2020






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...