K-Nearest Neighbor (KNN) is a method applied in classifying objects based on learning data that is closest to the object based on comparison between previous and current data. In the learning process, KNN calculates the distance of the nearest neighbor by applying the euclidean distance formula, while in other methods, optimization has been done on the distance formula by comparing it with the other similar in order to get optimal results. This study will discuss the calculation of the euclidean distance formula in KNN compared with the normalized euclidean distance, manhattan and normalized manhattan to achieve optimization results or optimal value in finding the distance of the nearest neighbor.
                        
                        
                        
                        
                            
                                Copyrights © 2020