Bulletin of Electrical Engineering and Informatics
Vol 9, No 1: February 2020

A robust state of charge estimation for multiple models of lead acid battery using adaptive extended Kalman filter

Maamar Souaihia (University of Chlef)
Bachir Belmadani (University of Chlef)
Rachid Taleb (University of Chlef)



Article Info

Publish Date
01 Feb 2020

Abstract

An accurate estimation technique of the state of charge (SOC) of batteries is an essential task of the battery management system. The adaptive Kalman filter (AEKF) has been used as an obsever to investigate the SOC estimation effectiveness. Therefore, The SOC is a reflexion of the chemistry of the cell which it is the key parameter for the battery management system. It is very complex to monitor the SOC and control the internal states of the cell. Three battery models are proposed and their state space models have been established, their parameters were identified by applying the least square method. However, the SOC estimation accuracy of the battery depends on the model and the efficiency of the algorithm. In this paper, AEKF technique is presented to estimate the SOC of Lead acid battery. The experimental data is used to identify the parameters of the three models and used to build different open circuit voltage–state of charge (OCV-SOC) functions relationship. The results shows that the SOC estimation based-model which has been built by hight order RC model can effectively limit the error, hence guaranty the accuracy and robustness.

Copyrights © 2020






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...