International Journal of Electrical and Computer Engineering
Vol 10, No 5: October 2020

Glioblastomas brain tumour segmentation based on convolutional neural networks

Moh'd Rasoul Al-Hadidi (Al Balqa Applied University)
Bayan AlSaaidah (Al-Balqa Applied University)
Mohammed Al-Gawagzeh (Al Balqa Applied University)



Article Info

Publish Date
01 Oct 2020

Abstract

Brain tumour segmentation can improve diagnostics efficiency, rise the prediction rate and treatment planning. This will help the doctors and experts in their work. Where many types of brain tumour may be classified easily, the gliomas tumour is challenging to be segmented because of the diffusion between the tumour and the surrounding edema. Another important challenge with this type of brain tumour is that the tumour may grow anywhere in the brain with different shape and size. Brain cancer presents one of the most famous diseases over the world, which encourage the researchers to find a high-throughput system for tumour detection and classification. Several approaches have been proposed to design automatic detection and classification systems. This paper presents an integrated framework to segment the gliomas brain tumour automatically using pixel clustering for the MRI images foreground and background and classify its type based on deep learning mechanism, which is the convolutional neural network. In this work, a novel segmentation and classification system is proposed to detect the tumour cells and classify the brain image if it is healthy or not. After collecting data for healthy and non-healthy brain images, satisfactory results are found and registered using computer vision approaches. This approach can be used as a part of a bigger diagnosis system for breast tumour detection and manipulation.

Copyrights © 2020






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...