Bulletin of Electrical Engineering and Informatics
Vol 9, No 4: August 2020

Improved ant colony optimization for quantum cost reduction

Shaveta Thakral (Manav Rachna International Institute of Research and Studies)
Dipali Bansal (Manav Rachna International Institute of Research and Studies)



Article Info

Publish Date
01 Aug 2020

Abstract

Heuristic algorithms play a significant role in synthesize and optimization of digital circuits based on reversible logic yet suffer with multiple disadvantages for multiqubit functions like scalability, run time and memory space. Synthesis of reversible logic circuit ends up with trade off between number of gates, quantum cost, ancillary inputs and garbage outputs. Research on optimization of quantum cost seems intractable. Therefore post synthesis optimization needs to be done for reduction of quantum cost. Many researchers have proposed exact synthesis approaches in reversible logic but focussed on reduction of number of gates yet quantum cost remains undefined. The main goal of this paper is to propose improved ant colony optimization (ACO) algorithm for quantum cost reduction. The research efforts reported in this paper represent a significant contribution towards synthesis and optimization of high complexity reversible function via swarm intelligence based approach. The improved ACO algorithm provides low quantum cost based toffoli synthesis of reversible logic function without long computation overhead.

Copyrights © 2020






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...