High dimensional optimization considers being one of the most challenges that face the algorithms for finding an optimal solution for real-world problems. These problems have been appeared in diverse practical fields including business and industries. Within a huge number of algorithms, selecting one algorithm among others for solving the high dimensional optimization problem is not an easily accomplished task. This paper presents a comprehensive study of two swarm intelligence based algorithms: 1-particle swarm optimization (PSO), 2-cuckoo search (CS).The two algorithms are analyzed and compared for problems consisting of high dimensions in respect of solution accuracy, and runtime performance by various classes of benchmark functions.
Copyrights © 2018