IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 9, No 3: September 2020

Application of artificial neural network to predict amount of carried weight of cargo train in rail transportation system

Siti Nasuha Zubir (Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA)
S. Sarifah Radiah Shariff (Malaysia Institute of Transport, Universiti Teknologi MARA)
Siti Meriam Zahari (Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA)



Article Info

Publish Date
01 Sep 2020

Abstract

Derailments of cargo have frequently occurred in Malaysian train services during the last decade. Many factors contribute to this incident, especially its total amount of carried weight. It is found that severe derailments cause damage to both lives and properties every year. If the amount of carried weight of cargo train could be accurately forecasted in advance, then its detrimental effect could be greatly minimized. This paper presents the application of Artificial Neural Network (ANN) to predict the amount of carried weight of cargo train, with KTMB used as the study case. As there are many types of cargo being carried by KTMB, this study focuses only on cement that being carried in twelve (12) different routes. In this study, Artificial Neural Network (ANN) has been incorporated for developing a predictive model with three (3) different training algorithms, Levenberg-Marquardt (LM), Quick Propagation (QP) and Conjugate Gradient Descent (CGD). The best training algorithm is selected to predict the amount of carried weight by comparing the error measures of all the training algorithm which are Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE). The obtained results indicated that the ANN technique is suitable for predicting the amount of carried weight.

Copyrights © 2020






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...