IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 9, No 3: September 2020

Machine learning-based technique for big data sentiments extraction

Noraini Seman (Faculty of Computer &
Mathematical Sciences, Universiti Teknologi MARA)

Nurul Atiqah Razmi (Faculty of Computer &
Mathematical Sciences, Universiti Teknologi MARA)



Article Info

Publish Date
01 Sep 2020

Abstract

A huge amount of data is generated every minute for social networking and content sharing via Social media sites that can be in a form of structured, unstructured or semi-structured data.  One of the largest used social media sites is Twitter, where each and every day millions of data generated in the form of unstructured tweets. Tweets or opinions of the people can be used to extract sentiments of the people. Sentiment analysis is beneficial for organizations to improve their products and make required changes on demand to increase their profit. In this paper, three machine learning algorithms Support Vector Machine (SVM), Decision Trees (DT), and Naive Bayes (NB) for classifying sentiments of twitters data. The purpose of this research is to compare the outcomes of these algorithms to identify best machine learning method which gives most accurate and efficient results for classifying twitter data. Our experimental result shows that same preprocessing methods on a different dataset affect similarly the classifiers performance. After analyzing the results it is observed that SVM provides 64.96%, 71.26% and 91.25% precision which is better than other two algorithms. Also, overall Recall and F-measure rate of SVM is greater than NB and DT for three datasets. However, it is important to further study current available preprocessing techniques that help us to improve results of various classifiers.

Copyrights © 2020






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...