Jurnal Teknoin
Vol. 23 No. 3 (2017)

Klasifikasi sinyal EMG berbasis jaringan syaraf tiruan dan discrete wavelet transform

Ikhwan Mustiadi (Jurusan Teknik Elektro, Fakultas Sains dan Teknologi, Universitas Respati Yogyakarta)



Article Info

Publish Date
30 Apr 2018

Abstract

Electromyograph signal (EMG) is a non-stationary biomedical signal, making it difficult todetermine the pattern. The method normally used for signal analysis is Fast Fourier Transform (FFT), but it has some drawbacks because it requires stable signals. To answer this deficiency wavelet transformation is used, especially discrete wavelet transforms that can analyze the signal in both the realm of time and frequency.The method to be used in this research is wavelet transformation for signal analysis withdecomposition up to level 7 using wavelet symlet 8. This feature extraction result is used as input of artificial neural network (ANN) type of propagation backward with architecture of 8 input layer, 5 hidden layer and 3 layers of output.ANN Turnback is able to recognize 3 types of EMG signals namely Normal, Myopathy andNeuropathy. Based on the feature extraction of EMG signal decomposition energy characteristics. Network architecture with 8 input layers. 5 hidden layers and 3 output layers Proven best in the introduction of EMG signals. The highest success rate is the introduction of EMop Myopathy signal pattern reaching 94%, so the network architecture is proposed to regenerate the EMG signal.

Copyrights © 2017






Journal Info

Abbrev

jurnal-teknoin

Publisher

Subject

Engineering Mechanical Engineering

Description

Teknoin memiliki komitmen untuk mempublikasikan topik-topik dalam bidang teknologi industri. Selain itu, dengan fitur jurnal open-access, diharapkan Teknoin dapat menjadi rujukan akademis tanpa batas baik untuk penelitian, pengajaran, maupun tujuan akademis ...