ELKHA : Jurnal Teknik Elektro
Vol. 11 No. 1, April 2019

Studi Perbandingan Metode Wavelet Dalam Speech Recognition Pada Sistem Akses Personel

Sunardi, Ariyawan (Unknown)
Mahardika, Rezky (Unknown)



Article Info

Publish Date
27 Sep 2019

Abstract

Penelitian tentang speech recognition terus berkembang terkait identifikasi personel. Pada penelitian ini, kami melakukan studi perbandingan metode wavelet dalam speech recognition. Pada penelitian ini teknologi speech recognition berbasiskan wavelett dan neuro fuzzy. Beberapa parameter yang digunakan dalam penelitian ini adalah sampel suara dengan frekuensi sampling 8000 Hz dan 8 bit per sampel dengan filter wavelet High Pass Filter (HPF). Level dekomposisi menggunakan wavelet daubechies, symlet dan coiflet. Nilai thereshold filter wavelet identifikasi personel 57,72%, False Rejection Rate (FRR) 40% dan running time 1,97 detik. Untuk nilai thereshold identifikasi personel 100%, False Rejection Rate (FRR) 0% dan running time 5,43 detik didapatkan pada level dekomposisi 5 pada wavelet db1. Identifikasi tipe wavelet dari yang terbaik adalah coiflet, symlet dan daubechies karena coif2 level 2 memberikan identifikasi 60,00%, FRR 40,00% dan running time 1,97 detik

Copyrights © 2019






Journal Info

Abbrev

Elkha

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Energy Industrial & Manufacturing Engineering

Description

The ELKHA publishes high-quality scientific journals related to Electrical and Computer Engineering and is associated with FORTEI (Forum Pendidikan Tinggi Teknik Elektro Indonesia / Indonesian Electrical Engineering Higher Education Forum). The scope of this journal covers the theory development, ...