Generalized Additive Models (GAM) merupakan kombinasi dari model additive dan generalized linear models (GLMs). GAM dengan variabel respon bertipe biner disebut model generalized additive logistic. Perbedaan hasil model regresi logistik pada GLMs dan GAM didapatkan pada pemodelan faktor-faktor yang mempengaruhi keuntungan PT.PDC. Dari studi kasus PT.PDC. terlihat bahwa GLMs hanya menangkap hubungan linier antara log-odds dan variabel prediktor, sedangkan GAM dapat menangkap hubungan kuadratik yang digambarkan dalam grafik prediksi parsial. Sehingga dapat disimpulkan bahwa GAM mampu memodelkan hubungan yang lebih kompleks dibanding GLMs.
Copyrights © 2018