Bulletin of Electrical Engineering and Informatics
Vol 9, No 5: October 2020

Deep convolutional neural network for hand sign language recognition using model E

Yohanssen Pratama (Institut Teknologi Del)
Ester Marbun (Institut Teknologi Del)
Yonatan Parapat (Institut Teknologi Del)
Anastasya Manullang (Institut Teknologi Del)



Article Info

Publish Date
01 Oct 2020

Abstract

An image processing system that based computer vision has received many attentions from science and technology expert. Research on image processing is needed in the development of human-computer interactions such as hand recognition or gesture recognition for people with hearing impairments and deaf people. In this research we try to collect the hand gesture data and used a simple deep neural network architecture that we called model E to recognize the actual hand gestured. The dataset that we used is collected from kaggle.com and in the form of ASL (American Sign Language) datasets. We doing accuracy comparison with another existing model such as AlexNet to see how robust our model. We find that by adjusting kernel size and number of epoch for each model also give a different result. After comparing with AlexNet model we find that our model E is perform better with 96.82% accuracy.

Copyrights © 2020






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...