Proceeding of the Electrical Engineering Computer Science and Informatics
Vol 6: EECSI 2019

Paraphrase Detection Using Manhattan's Recurrent Neural Networks and Long Short-Term Memory

Achmad Aziz (Universitas Jenderal Achmad Yani)
Esmeralda Contessa Djamal (Universitas Jenderal Achmad Yani)
Ridwan Ilyas (Universitas Jenderal Achmad Yani)



Article Info

Publish Date
18 Sep 2019

Abstract

Natural Language Processing (NLP) is a part of artificial intelligence that can extract sentence structures from natural language. Some discussions about NLP are widely used, such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) to summarize papers with many sentences in them. Siamese Similarity is a term that applies repetitive twin network architecture to machine learning for sentence similarity. This architecture is also called Manhattan LSTM, which can be applied to the case of detecting paraphrase sentences. The paraphrase sentence must be recognized by machine learning first. Word2vec is used to convert sentences to vectors so they can be recognized in machine learning. This research has developed paraphrase sentence detection using Siamese Similarity with word2vec embedding. The experimental results showed that the amount of training data is dominant to the new data compared to the number of times and the variation in training data. Obtained data accuracy, 800,000 pairs provide accuracy reaching 99% of training data and 82.4% of new data. These results are better than the accuracy of the new data, with half of the training data only yielding 64%. While the amount of training data did not effect on training data.

Copyrights © 2019






Journal Info

Abbrev

EECSI

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

Proceeding of the Electrical Engineering Computer Science and Informatics publishes papers of the "International Conference on Electrical Engineering Computer Science and Informatics (EECSI)" Series in high technical standard. The Proceeding is aimed to bring researchers, academicians, scientists, ...