Jurnal Teknologi dan Sistem Komputer
Volume 8, Issue 3, Year 2020 (July 2020)

Klasifikasi pendonor darah potensial menggunakan pendekatan algoritme pembelajaran mesin

Merinda Lestandy (Department of Electronics, Universitas Muhammadiyah Malang)
Lailis Syafa'ah (Department of Electrical Engineering, Universitas Muhammadiyah Malang)
Amrul Faruq (Department of Electrical Engineering, Universitas Muhammadiyah Malang)



Article Info

Publish Date
31 Jul 2020

Abstract

Blood donation is the process of taking blood from someone used for blood transfusions. Blood type, sex, age, blood pressure, and hemoglobin are blood donor criteria that must be met and processed manually to classify blood donor eligibility. The manual process resulted in an irregular blood supply because blood donor candidates did not meet the criteria. This study implements machine learning algorithms includes kNN, naïve Bayes, and neural network methods to determine the eligibility of blood donors. This study used 600 training data divided into two classes, namely potential and non-potential donors. The test results show that the accuracy of the neural network is 84.3 %, higher than kNN and naïve Bayes, respectively of 75 % and 84.17 %. It indicates that the neural network method outperforms comparing with kNN and naïve Bayes.

Copyrights © 2020






Journal Info

Abbrev

JTSISKOM

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

Jurnal Teknologi dan Sistem Komputer (JTSiskom, e-ISSN: 2338-0403) adalah terbitan berkala online nasional yang diterbitkan oleh Departemen Teknik Sistem Komputer, Universitas Diponegoro, Indonesia. JTSiskom menyediakan media untuk mendiseminasikan hasil-hasil penelitian, pengembangan dan ...