Journal of Geoscience, Engineering, Environment, and Technology
Vol. 4 No. 2-2 (2019): Special Edition (Geology, Geomorphology and Tectonics of India)

Geometric and strain analyses in folds of the area around Gankot, district Pithoragarh, Uttarakhand, India

Swati Lata (Center of Advanced Study, Department of Geology, Banaras Hindu University, Varanasi -221005)
Ravindra Kumar (Center of Advanced Study, Department of Geology, Banaras Hindu University, Varanasi -221005)
Vaibhava Srivastava (Center of Advanced Study, Department of Geology, Banaras Hindu University, Varanasi -221005)



Article Info

Publish Date
25 Jul 2019

Abstract

The study area around Gankot in Pithoragarh district of Uttarakhand belongs to the Thalkedar Limestone unit of Mandhali Formation, Tejam Group in Inner Sedimentary Zone of Lesser Himalaya, which exposes complexly folded and refolded structures. Geometric analysis carried out on the profile section of the fold tracing using dip isogon and orthogonal thickness parameters revealed presence of all the fold geometry suggested by Ramsay (1967) however the class 3 followed by class 1B are the most dominant classes in the study area when individual layers of the fold were studied. The study of folds as multilayered unit reveals that folds in study area belong to strongly non-analogous fold class of anisodeviatoric folds. In fold, the strain analysis has been done by drawing strain ellipse obtained by Inverse Thickness Method which is useful in estimating flattening strain even when the flattening is imposed obliquely to the fold’s axial trace. The finite two-dimensional flattening strain ratio (Rs) value ranged between 1 and 3.14 with an average Rs value of 1.60. The method of Srivastava and Gairola (2003) has also been used to obtain shear strain and flattening strain for the multilayered folds of study area. The results reveal that the multilayered folds around Gankot area are moderately flattened with mean flatting strain varying between 1.06 and 2.28. A very high degree of variation in shearing ranging about 70o in both clockwise and anticlockwise directions has been noticed. The shear strains (γ) in folds have been found to vary between -2.75 to + 3.27 with an average of +0.33. The shearing and strain patterns are suggestive that the most dominant folding mechanism has been the flexure-shear for the folds of the study area which are overprinted by the fold flattening and other subsequent deformations.

Copyrights © 2019






Journal Info

Abbrev

JGEET

Publisher

Subject

Earth & Planetary Sciences Engineering Environmental Science Physics

Description

JGEET (Journal of Geoscience, Engineering, Environment and Technology) published the original research papers or reviews about the earth and planetary science, engineering, environment, and development of Technology related to geoscience. The objective of this journal is to disseminate the results ...