Communications in Science and Technology
Vol 4 No 2 (2019)

Machine learning algorithm for improving performance on 3 AQ-screening classification

Pratama, Taftazani Ghazi (Unknown)
Hartanto, Rudy (Unknown)
Setiawan, Noor Akhmad (Unknown)



Article Info

Publish Date
30 Dec 2019

Abstract

Autism Spectrum Disorder (ASD) classification using machine learning can help parents, caregivers, psychiatrists, and patients to obtain the results of early detection of ASD. In this study, the dataset used is the autism-spectrum quotient for child, adolescent and adult, namely AQ-child, AQ-adolescent, AQ-adult. This study aims to improve the sensitivity and specificity of previous studies so that the classification results of ASD are better characterized by the reduced misclassification. The algorithm applied in this study: support vector machine (SVM), random forest (RF), artificial neural network (ANN). The evaluation results using 10-fold cross validation showed that RF succeeded in producing higher adult AQ sensitivity, which was 87.89%. The increase in the specificity level of AQ-Adolescents is better produced using an SVM of 86.33%.

Copyrights © 2019






Journal Info

Abbrev

cst

Publisher

Subject

Engineering

Description

Communication in Science and Technology [p-ISSN 2502-9258 | e-ISSN 2502-9266] is an international open access journal devoted to various disciplines including social science, natural science, medicine, technology and engineering. CST publishes research articles, reviews and letters in all areas of ...