JIKA (Jurnal Informatika)
Vol 2, No 2 (2018): JIKA (Jurnal Informatika)

ANALISIS PERBANDINGAN ALGORITMA NAIVE BAYES DAN SUPPORT VECTOR MACHINE DALAM MENGKLASIFIKASIKAN JUMLAH PEMBACA ARTIKEL ONLINE

Riyanto, Umbar (Unknown)



Article Info

Publish Date
09 Oct 2019

Abstract

PT. Linktone Indonesia merupakan salah satu perusahaan yang bergerak dalam bidang portal berita online. Semakin banyaknya portal berita online di Indonesia, para penulis yang ada di PT. Linktone Indonesia harus dapat bersaing, agar artikel yang mereka publish mendapatkan jumlah pembaca yang maksimal. Jumlah pembaca pada sebuah artikel tidaklah menentu, dan sulit untuk diprediksi. Banyaknya jumlah artikel yang dimiliki, maka dapat dilakukan penelitian data mining untuk mengklasifikasi jumlah pembaca artikel. Terdapat beberapa algoritma dalam teknik klasifikasi, akan tetapi tidak semua algoritma memiliki kinerja dan tingkat keakuratan yang baik dalam mengklasifikasi jumlah pembaca artikel. Penelitian ini membandingkan dua algoritma klasifikasi antara Naive Bayes,  Support Vector Machine dan Bagging pada tiap algoritma. Peneliti membagi menjadi 5 dataset dan menggunakan tools WEKA dengan tools options K-Folds Cross Validation dan Confussion Matrix. Hasil penelitian ini, dengan jumlah dataset 7111 record. Bagging kurang memperbaiki hasil klasifikasi dengan jumlah dataset yang besar dan memerlukan waktu pembuatan model yang sangat lama dengan klasifikasi Support Vector Machine. Sementara itu Naive Bayes dalam segi waktu pembuatan model mendapatkan waktu yang paling cepat.

Copyrights © 2018






Journal Info

Abbrev

jika

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Penlitian dan Pengabdian Masyarakat merupakan Tolak Ukur aktivitas Dosen Perguruan Tinggi, berdasarkan hal tersebut maka dengan ini program studi teknik informatika di Universitas Muhammadiyah Tangerang menyediakan lahan untuk penerbitan jurnal penelitian yang dilakukan oleh dosen. Jurnal ini ...