Klasifiaksi berita hoaks merupakan salah satu aplikasi kategorisasi teks. Berita hoaks harus diklasifikasikan karena berita hoaks dapat mempengaruhi tindakan dan pola pikir pembaca. Dalam proses klasifikasi pada penelitian ini menggunakan beberapa tahapan yaitu praproses, ekstraksi fitur, seleksi fitur dan klasifikasi. Penelitian ini bertujuan membandingkan dua algoritma yaitu algoritma Naïve Bayes dan Multinomial Naïve Bayes, manakah dari kedua algoritma tersebut yang lebih efektif dalam mengklasifikasikan berita hoaks. Data yang digunakan dalam penelitian ini berasal dari www.trunbackhoax.id untuk data berita hoaks sebanyak 100 artikel dan data berita non-hoaks berasal dari kompas.com, detik.com berjumlah 100 artikel. Data latih berjumlah 140 artikel dan data uji berjumlah 60 artikel. Hasil perbandingan algoritma Naïve Bayes memiliki nilai F1-score sebesar 0,93 dan nilai F1-score Multinomial Naïve Bayes sebesar 0,92.
Copyrights © 2020