Indonesian Journal of Electrical Engineering and Computer Science
Vol 12, No 3: December 2018

Event-Concept Pair Series Extraction to Represent Medical Complications from Texts

Chaveevan Pechsiri (Dhurakij Pundit University)
Sumran Phainoun (Dhurakij Pundit University)



Article Info

Publish Date
01 Dec 2018

Abstract

This research aims to determine an event-concept pair series as consequent events, particularly a Cause-Effect-concept pair (called ‘CEpair’) series on disease documents downloaded from hospital-web-boards. CEpair series are used for representing medical/disease complications which benefit for Solving system. Each causative/effect event concept is expressed by a verb phrase of an elementary discourse unit (EDU) which is a simple sentence. The research has three problems; how to determine each adjacent-EDU pair having the cause-effect relation, how to determine a CEpair series mingled with non-causeeffect-relation EDUs, and how to identify the complication of several extracted CEpair series from the documents. Therefore, we extract NWordCo-concept set having the causative/effect concepts from EDUs’ verb phrases including a support vector machine to solve each NWordCo size. We apply the Naïve Bayes classifier to learn and extract an NWordCoconcept pair set as a knowledge template having the cause-effect relation from the documents. We then propose using the knowledge template to extract several CEpair series. We also apply the intersection of the NWordCo-concept sets to identify the commoncause/effect for representing the complication-development parts of the extracted-CEpair series. The research results provide the high percent correctness of the CEpair-series determination from the documents.

Copyrights © 2018