IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 9, No 3: September 2020

Local search algorithms based on benchmark test functions problem

Atheer Bassel (Information Technology Center, University of Anbar)
Hussein M. Haglan (Computer Center, University of Anbar)
Akeel Sh. Mahmoud (Computer Center, University of Anbar)



Article Info

Publish Date
01 Sep 2020

Abstract

Optimization process is normally implemented to solve several objectives in the form of single or multi-objectives modes. Some traditional optimization techniques are computationally burdensome which required exhaustive computational times. Thus, many studies have invented new optimization techniques to address the issues. To realize the effectiveness of the proposed techniques, implementation on several benchmark functions is crucial. In solving benchmark test functions, local search algorithms have been rigorously examined and employed to diverse tasks. This paper highlights different algorithms implemented to solve several problems. The capacity of local search algorithms in the resolution of engineering optimization problem including benchmark test functions is reviewed. The use of local search algorithms, mainly Simulated Annealing (SA) and Great Deluge (GD) according to solve different problems is presented. Improvements and hybridization of the local search and global search algorithms are also reviewed in this paper. Consequently, benchmark test functions are proposed to those involved in local search algorithm.

Copyrights © 2020






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...