Jurnal Matematika: MANTIK
Vol. 4 No. 2 (2018): Mathematics and Applied Mathematics

Peramalan Jumlah Penumpang Kereta Api di Indonesia dengan Resilient Back-Propagation (Rprop) Neural Network

Mertha Endah Ervina (Universitas Padjadjaran)
Rini Silvi (Universitas Padjadjaran)
Intaniah Ratna Nur Wisisono (Universitas Padjadjaran)



Article Info

Publish Date
31 Oct 2018

Abstract

Train scheduling affects the level of customer satisfaction and profitability of the train service provider. The prediction method of Back-propagation Neural Network (BPNN) has relatively slow convergence. Therefore, this study uses Resilient Back-propagation (Rprop) because it has a more fast convergence and high accuracy. The model produced is a model for Jabodetabek, Java (non-Jabodetabek), Sumatra, and Indonesia. From the results of data analysis conducted, it can be concluded that the performance of neural network model with Resilient Back-propagation (Rprop) formed from training data gives very accurate prediction accuracy level with mean absolute percentage error (MAPE) less than 10% for each model. Then forecasting for the next 12 months conducted and the results compared with the data testing, Rprop provides a very high forecasting accuracy with MAPE value below 10%. The MAPE value for each forecasting the number of rail passengers is 7.50% for Jabodetabek, 5.89% for Java (non-Jabodetabek), 5.36% for Sumatra and 4.80% for Indonesia. That is, four neural network architectures with Rprop can be used for this case with very accurate forecasting results.

Copyrights © 2018






Journal Info

Abbrev

mantik

Publisher

Subject

Mathematics

Description

Jurnal Matematika MANTIK is a mathematical journal published biannually by the Mathematics Department, Faculty of Science and Technology, UIN Sunan Ampel Surabaya. Journal includes research papers, literature studies, analysis, and problem-solving in Mathematics (Algebra, Analysis, Statistics, ...