Jurnal Teknologi Informasi dan Ilmu Komputer
Vol 7 No 3: Juni 2020

Kombinasi Feature Selection Fisher Score dan Principal Component Analysis (PCA) untuk Klasifikasi Cervix Dysplasia

Widagdo, Krisan Aprian (Unknown)
Adi, Kusworo (Unknown)
Gernowo, Rahmat (Unknown)



Article Info

Publish Date
22 May 2020

Abstract

Pengamatan citra Pap Smear merupakan langkah yang sangat penting dalam mendiagnosis awal terhadap gangguan servik. Pengamatan tersebut membutuhkan sumber daya yang besar. Dalam hal ini machine learning dapat mengatasi masalah tersebut. Akan tetapi, keakuratan machine learning bergantung pada fitur yang digunakan. Hanya fitur relevan dan diskriminatif yang mampu memberikan hasil klasifikasi akurat. Pada penelitian ini menggabungkan Fisher Score dan Principal Component Analysis (PCA). Pertama Fisher Score memilih fitur relevan berdasarkan perangkingan. Langkah selanjutnya PCA mentransformasikan kandidat fitur menjadi dataset baru yang tidak saling berkorelasi. Metode jaringan syaraf tiruan Backpropagation digunakan untuk mengevaluasi performa kombinasi Fisher Score dan PCA. Model dievaluasi dengan metode 5 fold cross validation. Selain itu kombinasi ini dibandingkan dengan model fitur asli dan model fitur hasil Fscore. Hasil percobaan menunjukkan kombinasi fisher score dan PCA menghasilkan performa terbaik (akurasi 0.964±0.006, Sensitivity 0.990±0.005 dan Specificity 0.889±0.009). Dari segi waktu komputasi, kombinasi Fisher Score dan PCA membutuhkan waktu relative cepat. Penelitian ini membuktikan bahwa penggunaan feature selection dan feature extraction mampu meningkatkan kinerja klasifikasi dengan waktu yang relative singkat. Abstract Examination Pap Smear images is an important step to early diagnose cervix dysplasia. It needs a lot of resources. In this case, Machine Learning can solve this problem. However, Machine learning depends on the features used. Only relevant and discriminant features can provide an accurate classification result. In this work, combining feature selection Fisher Score (FScore) and Principal Component Analysis (PCA) is applied. First, FScore selects relevant features based on rangking score. And then PCA transforms candidate features into a new uncorrelated dataset. Artificial Neural Network Backpropagation used to evaluate performance combination FScore PCA. The model evaluated with 5 fold cross validation. The other hand, this combination compared with original features model and FScore model. Experimental result shows the combination of Fscore PCA produced the best performance (Accuracy 0.964±0.006, Sensitivity 0.990±0.005 and Specificity 0.889±0.009). In term of computational time, this combination needed a reasonable time. In this work, it was proved that applying feature selection and feature extraction could improve performance classification with a promising time.

Copyrights © 2020






Journal Info

Abbrev

JTIIK

Publisher

Subject

Computer Science & IT Engineering

Description

Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) merupakan jurnal nasional yang diterbitkan oleh Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya (UB), Malang sejak tahun 2014. JTIIK memuat artikel hasil-hasil penelitian di bidang Teknologi Informasi dan Ilmu Komputer. JTIIK berkomitmen ...