The tourism sector is one of the country's biggest foreign exchange earners. Foreign tourist visits to Indonesia reached 16.1 million during 2019. Therefore foreign tourist visits become a very important thing. In this study clustering will be carried out or grouping data on foreign tourist visits into 5 groups for the category of countries with very high, high, high enough, low and very low visits. Data processing was performed using the K-Means clustering method and the Principle Component Analysis (PCA) dimension reduction method. From the data processing, K-Means modeling results combined with the PCA method resulted in a smaller or better Davies Bouldin Index (DBI) evaluation value of 0.310 compared to K-Means modeling alone which obtained a DBI value of 0.382. The tools used in data processing are RapidMiner. The results of clustering are expected to be a reference for related parties to maximize the promotion of overseas tourism.
Copyrights © 2020