Bianglala Informatika : Jurnal Komputer dan Informatika Akademi Bina Sarana Informatika Yogyakarta
Vol 8, No 1 (2020): Bianglala Informatika 2020

Penerapan Metode Principle Component Analysis (PCA) untuk Clustering Data Kunjungan Wisatawan Mancanegara ke Indonesia

Elly Muningsih (Universitas Bina Sarana Informatika)
Noor Hasan (Universitas Bina Sarana Informatika)
Gunawan Budi Sulistyo (Universitas Bina Sarana Informatika)



Article Info

Publish Date
31 Mar 2020

Abstract

The tourism sector is one of the country's biggest foreign exchange earners. Foreign tourist visits to Indonesia reached 16.1 million during 2019. Therefore foreign tourist visits become a very important thing. In this study clustering will be carried out or grouping data on foreign tourist visits into 5 groups for the category of countries with very high, high, high enough, low and very low visits. Data processing was performed using the K-Means clustering method and the Principle Component Analysis (PCA) dimension reduction method. From the data processing, K-Means modeling results combined with the PCA method resulted in a smaller or better Davies Bouldin Index (DBI) evaluation value of 0.310 compared to K-Means modeling alone which obtained a DBI value of 0.382. The tools used in data processing are RapidMiner. The results of clustering are expected to be a reference for related parties to maximize the promotion of overseas tourism.

Copyrights © 2020






Journal Info

Abbrev

Bianglala

Publisher

Subject

Computer Science & IT

Description

JURNAL BIANGLALA INFORMATIKA telah memiliki ISSN baik versi cetak maupun online. Jurnal ini berisi tentang karya ilmiah hasil penelitian yang bertemakan: Sistem Pakar, Sistem Informasi, Web Programming, Mobile Programming, Games Programming, Data Mining, dan Sistem Penunjang ...