E-learning merupakan pembelajaran berbasis elektronik dengan menggunakan komputer atau berbasis komputer. Salah satu aplikasi e-learning yang banyak dikenal saat ini adalah aplikasi Ruang Guru. Salah satu cara untuk mengetahui keberhasilan suatu aplikasi adalah dengan melakukan analisis sentimen terhadap aplikasi tersebut. Pada penelitian ini, analisis sentimen diambil dari komentar pengguna media sosial Twitter terhadap aplikasi Ruang Guru sebanyak 513 tweet, setelah dilakukan data cleaning, dengan sentimen positif sebanyak 338 tweet dan sentimen negatif sebanyak 175 tweet. Data tersebut diekstraksi menggunakan algoritma Naive Bayes (NB), Support Vector Machine (SVM), K-Nearest Neighbour (K-NN), dan feature selection dengan algoritma Particle Swarm Optimization (PSO). Penelitian ini membandingkan metode NB, SVM, K-NN tanpa menggunakan feature selection dengan metode NB, SVM, K-NN yang menggunakan feature selection serta membandingkan nilai Area Under Curve (AUC) dari metode-metode tersebut untuk mengetahui algoritma yang paling optimal. Hasil pengujian mendapatkan hasil bahwa aplikasi optimasi terbaik dalam model ini adalah algoritma PSO berbasis SVM dengan nilai akurasi sebesar 78,55% dan AUC sebesar 0,853. Penelitian ini berhasil mendapatkan algoritma yang efektif dan terbaik dalam mengklasifikasikan komentar positif dan komentar negatif terkait dengan aplikasi Ruang Guru
Copyrights © 2020