Jurnal Riset Informatika
Vol. 4 No. 1 (2021): December 2021

ANALYSIS CLASSIFICATION SENTIMENT OF THE LARGE PRIEST OF FPI’S RETURN USING SVM CLASSIFICATION WITH OVERSAMPLING METHOD

Zetta Nillawati Reyka Putri (Universitas Islam Indonesia)
Muhammad Muhajir (Universitas Islam Indonesia)



Article Info

Publish Date
14 Dec 2021

Abstract

At the end of 2020, Habib Rizieq's return to Indonesia drew criticism from the public for causing crowds during the Covid-19 pandemic. News and opinions about Habib Rizieq fill internet platforms, including Twitter. The researcher wants to classify the opinion text data of Habib Rizieq's return from Twitter into positive and negative sentiments using the Support Vector Machine method. Opinion data comes from Twitter, so the data is analyzed by text mining through the preprocessing stage. The SVM classification of unbalanced data between positive and negative classes resulted in 95.06% accuracy with a negative class precision value of 84% and better than 72% recall, in the positive class the precision value was 96% less than 2% of recall 98%. While the SVM classification with the oversampling method gets 100% accuracy, precision, and recall. The results of positive sentiments are known that the public will always support and want freedom for Rizieq, for negative sentiments it is known that many people are disappointed with Rizieq regarding the lies of his swab test results.

Copyrights © 2021






Journal Info

Abbrev

jri

Publisher

Subject

Computer Science & IT

Description

Jurnal Riset Informatika, merupakan Jurnal yang diterbitkan oleh Kresnamedia Publisher. Jurnal Riset Informatika, berawal diperuntukan menampung paper-paper ilmiah yang dibuat oleh peneliti dan dosen-dosen program studi Sistem Informasi dan Teknik ...