Pada penelitian ini dilakukan investigasi parser dengan pendekatan left-corner untuk data tweet bahasa Indonesia. Total koleksi tweet sebanyak 850 tweet yang dibagi menjadi tiga kumpulan data, yakni data train POS Tagger, data train dan data uji. Left-corner menggabungkan dua metode yakni top-down dan bottom-up. Dimana top-down digunakan pada proses pengenalan kelas kata dan bottom-up digunakan pada proses pengenalan struktur kalimat. Adapun jenis tag yang digunakan dalam proses top-down berjumlah 23 tagset dan frasa yang digunakan untuk menentukan struktur kalimat frasa yakni frasa nomina, frasa verbal, frasa adjektiva, frasa adverbia dan frasa preposisional. Hasilnya adalah untuk pendekatan left corner mencapai nilai precision 88,29%, nilai recall 68,3% dan F1 measure 77,02%. Nilai yang diperoleh dengan pendekatan left-corner lebih besar dibandingkan nilai dengan pendekatan bottom-up. Hasil dari nilai yang diperoleh dengan bottom up mencapai nilai precision 68,79%, nilai recall 47,12% dan F1 measure 55,9%. Hal ini disebabkan penggunaan kelas kata pada proses top-down berpengaruh pada sturuktur kalimat pada proses bottom up.
Copyrights © 2020