International Journal of Electrical and Computer Engineering
Vol 11, No 2: April 2021

Forging a deep learning neural network intrusion detection framework to curb the distributed denial of service attack

Arnold Adimabua Ojugo (Federal University of Petroleum Resources Effurun)
Rume Elizabeth Yoro (Delta State Polytechnic Ogwashi-Uku)



Article Info

Publish Date
01 Apr 2021

Abstract

Today’s popularity of the internet has since proven an effective and efficient means of information sharing. However, this has consequently advanced the proliferation of adversaries who aim at unauthorized access to information being shared over the internet medium. These are achieved via various means one of which is the distributed denial of service attacks-which has become a major threat to the electronic society. These are carefully crafted attacks of large magnitude that possess the capability to wreak havoc at very high levels and national infrastructures. This study posits intelligent systems via the use of machine learning frameworks to detect such. We employ the deep learning approach to distinguish between benign exchange of data and malicious attacks from data traffic. Results shows consequent success in the employment of deep learning neural network to effectively differentiate between acceptable and non-acceptable data packets (intrusion) on a network data traffic.

Copyrights © 2021






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...