Salah satu metode Regresi Nonparametrik yang digunakan untuk klasifikasi dan mengatasi permasalahan data yang berdimensi tinggi yaitu menggunakan Multivariate Adaptive Regression Spline (MARS). MARS juga digunakan memperbaiki kelemahan dengan menghasilkan model yang kontinu dalam knot berdasarkan nilai generalized cross validation (GCV) terkecil. Dalam menentukan derajat kesehatan di indonesia, terdapat beberapa indikator yang dapat digunakan antara lain angka kematian bayi, angka kesakitan bayi, status gizi dan angka harapan hidup waktu lahir. Salah satu contoh masalah mordibitas atau angka kesakitan yang dialami bayi dan anak balita yaitu sembelit atau konstipasi. Tujuan dari penelitian ini yaitu untuk mengklasifikasikan dan menganalisis kejadian konstipasi terhadap pemberian ASI eksklusif dan pemberian susu formula pada bayi usia 6-12 bulan .Variabel yang digunakan dalam penelitian ini adalah kejadian konstipasi (Y) sebagai variabel dependen dengan kategori 1 adalah terjadi konstipasi, kategori 0 tidak terjadi konstipasisedangkan variabel independennya yaitu frekuensi BAB < 5 kali (X1), pemberian makanan bayi pada usia 6 bulan (X2), tinja padat (X3), menangis (X4), mengejan (X5), kesakitan (X6). Model MARS terbaik dengan kombinasi Funsi Basis (BF), maksimum interaksi (MI), dan minimum observasi (MO) secara Trial and error. Model MARS terbaik untuk klasifikasi kejadian konstipasi yaitu BF=24, MI=2, dan MO=0.Terdapat lima variabel yang berpengaruh terhadap model yaitu variabel frekuensi defekasi atau BAB < 5 kali (X1), pemberian makanan bayi pada usia 6 bulan (X2), Konsistensi tinja padat (X3), Mengejan (X4) dan kesakitan (X5).Kata Kunci : MARS, GCV, Konstipasi
                        
                        
                        
                        
                            
                                Copyrights © 2015