Al-Fiziya: Journal of Materials Science, Geophysics, Instrumentation and Theoretical Physics
Al-Fiziya: Journal of Materials Science, Geophysics, Instrumentation and Theoretical Physics | Vol.3

Evaluasi Implementasi Algoritma Machine Learning K-Nearest Neighbors (kNN) pada Data Spektroskopi Gamma Resolusi Rendah

Muhammad Sholih Fajri (Program Studi Fisika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta, Jalan Ir. H. Djuanda No.95, Ciputat, Kota Tangerang Selatan, Banten, 15412, Indonesia)
Nizar Septian (Program Studi Fisika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta, Jalan Ir. H. Djuanda No.95, Ciputat, Kota Tangerang Selatan, Banten, 15412, Indonesia)
Edy Sanjaya (Program Studi Fisika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta, Jalan Ir. H. Djuanda No.95, Ciputat, Kota Tangerang Selatan, Banten, 15412, Indonesia)



Article Info

Publish Date
04 Aug 2020

Abstract

Abstrak Pada artikel ini kami mengevaluasi bagaimana implementasi algoritma machine learning k-Nearest Neighbors (kNN) pada data spektroskopi gamma beresolusi rendah. Penelitian ini bertujuan untuk mengetahui bagaimana performa kNN dalam mempelajari data tersebut. Kami melakukan berbagai variasi, yaitu: jumlah data training, jumlah data tes, jenis metric, dan nilai k untuk memperoleh performa terbaik dari algoritma ini. Data spektroskopi gamma diambil menggunakan sintilator NaI(Tl) Leybold Didactic dengan resolusi energi sebesar 10.9 keV per channel. Hasil variasi menunjukkan bahwa algoritma kNN memberikan hasil prediksi klasifikasi radioisotop yang sangat fluktuatif.  Abstract In this paper we evaluate the implementation of a machine learning algorithm namely k-Nearest Neighbors (kNN) on low resolution gamma spectroscopy data. The aim is to provide the information of how well the algorithm performs on learning the data. We did the variation of number of training and test data, type of metric used, and values of k in order to see the best performance of the algorithm. The gamma spectroscopy data were taken using NaI(Tl) scintillator made by Leybold Didactic with resolution of 10.9 keV per channel. The variations show that the kNN algorithm produce significantly fluctuating accuracy to the prediction of radioisotope class.

Copyrights © 2020






Journal Info

Abbrev

al-fiziya

Publisher

Subject

Earth & Planetary Sciences Electrical & Electronics Engineering Energy Materials Science & Nanotechnology Physics

Description

Al-Fiziya: Journal of Materials Science, Geophysics, Instrumentation and Theoretical Physics is a journal of physics that published by Departement of Physics, Faculty of Science and Technology UIN Syarif Hidayatullah Jakarta. The aim of the journal is to disseminate the researches done by ...