BIMASTER
Vol 2, No 02 (2013): Bimaster

PERBANDINGAN METODE BOOTSTRAP DAN JACKKNIFE DALAM MENAKSIR PARAMETER REGRESI UNTUK MENGATASI MULTIKOLINEARITAS

Neva Satyahadewi., Ryan Iskandar, Muhlasah Novitasari Mara, (Unknown)



Article Info

Publish Date
27 Aug 2013

Abstract

Regresi berganda merupakan suatu metode statistik yang mendeskripsikan hubungan antara variabel terikat dengan dua atau lebih variabel bebas. Penelitian ini membandingkan metode Bootstrap dan metode Jackknife dalam menaksir parameter regresi ketika terjadi multikolinearitas. Penelitian ini menggunakan 33 kondisi data berbeda yang proses simulasinya menggunakan bantuan program R. Tingkat efisiensi dari kedua metode tersebut dibandingkan melalui nilai bias dan standar deviasi dari nilai taksiran yang dihasilkan. Penelitian ini menunjukkan bahwa metode Bootstrap menghasilkan nilai bias dan standar deviasi lebih kecil dibandingkan metode Jackknife. Sehingga metode Bootstrap lebih efisien dalam menduga parameter regresi dibandingkan metode Jackknife ketika terjadi multikolinearitas. Kata Kunci : Multikolinearitas, Bootstrap, Jackknife.

Copyrights © 2013






Journal Info

Abbrev

jbmstr

Publisher

Subject

Decision Sciences, Operations Research & Management Mathematics

Description

Bimaster adalah Jurnal Ilmiah berkala bidang Matematika, Statistika dan Terapannya yang terbit secara online dan dikelola oleh Jurusan Matematika FMIPA ...