Jurnal Online Mahasiswa (JOM) Bidang Matematika dan Ilmu Pengetahuan Alam
Vol 1, No 2 (2014): Wisuda Oktober 2014

METODE GAUSS-SEIDEL PREKONDISI DENGAN MENGGUNAKAN EKSPANSI NEUMANN

Adrika, Juanita (Unknown)
', Syamsudhuha (Unknown)
Karma, Asmara (Unknown)



Article Info

Publish Date
22 Jul 2014

Abstract

We discuss a preconditioned Gauss-Seidel method to solve a system of linear equation Ax = b by A which is a strictly diagonally dominant Z-matrix. Preconditioning matrix to be used is P = (I +U) −1 , where I is an identity matrix and U is a strictly upper triangular matrix. Using Neumann’s expansion to approximate P, we showthat the preconditioning matrix is equivalent to an existing preconditioning matrix of the form P = (I + βU). Numerical computations show that the proposed preconditionedGauss-Seidel method is better than the standard Gauss-Seidel method in solving a system of linear equation Ax = b.

Copyrights © 2014