KLIK (Kumpulan jurnaL Ilmu Komputer) (e-Journal)
Vol 2, No 2 (2015)

PENERAPAN K-OPTIMAL PADA ALGORITMA KNN UNTUK PREDIKSI KELULUSAN TEPAT WAKTU MAHASISWA PROGRAM STUDI ILMU KOMPUTER FMIPA UNLAM BERDASARKAN IP SAMPAI DENGAN SEMESTER 4

Mutiara Ayu Banjarsari (Unknown)
Irwan Budiman (Unknown)
Andi Farmadi (Unknown)



Article Info

Publish Date
21 Apr 2016

Abstract

The data pile on a database of academic information systems at Computer Science Program of Mathematic and Natural Science Faculty of Lambung Mangkurat University is not fully utilized, although it can provide new information that has not been known before. Data mining techniques can be used to predict the timely graduation of students. The k-Nearest Nieghbor, a method to classify objects based on training data located closest to the object, was used in this study. Selection of the value of k in kNN algorithm became important because it would affect the performance of the algorithm kNN, therefore it was necessary to know how the value of k and the level of accuracy. The k-Fold Cross Validation method and Accuracy Test was used to determine the value of k-Optimal. The result showed that the value of k = 5 was defined as k-Optimal which was then be applied in the kNN algorithm for prediction of timely graduation of students based on the Grade Point Average up to 4th semester. Keywords: kNN, k-Optimal, Classification, Data mining, k-Fold Cross Validation method Tumpukan data pada database sistem informasi akademik Program Studi Ilmu Komputer FMIPA Unlam belum dimanfaatkan secara maksimal, padahal dari data tersebut dapat memberikan sebuah informasi baru yang belum diketahui sebelumnya. Teknik data mining dapat digunakan untuk memprediksi kelulusan tepat waktu mahasiswa. Penelitian menggunakan metode k-Nearest Nieghbor yang merupakan sebuah metode untuk melakukan klasifikasi terhadap objek berdasarkan data training yang jaraknya paling dekat dengan objek tersebut. Pemilihan nilai k pada algoritma kNN menjadi hal yang penting karena akan mempengaruhi kinerja dari algoritma kNN, oleh karena itu perlu diketahui berapa nilai k dan tingkat akurasinya. Metode k-Fold Cross Validation dan Uji Akurasi digunakan untuk mengetahui nilai k-Optimal. Hasil yang didapat adalah nilai k=5 dengan tingkat akurasi sebesar 80.00% yang ditetapkan sebagai k-Optimal. Nilai k=5 diterapkan pada algoritma kNN untuk prediksi kelulusan tepat waktu mahasiswa berdasarkan IP sampai dengan semester 4. Kata Kunci : kNN, k-Optimal, Klasifikasi, Data mining, Sistem Informasi Akademik, Metode k-Fold Cross Validation

Copyrights © 2015






Journal Info

Abbrev

klik

Publisher

Subject

Computer Science & IT

Description

KLIK Scientific Journal, is a computer science journal as source of information in the form of research, the study of literature, ideas, theories and applications in the field of critical analysis study Computer Science, Data Science, Artificial Intelligence, and Computer Network, published two ...