KLIK (Kumpulan jurnaL Ilmu Komputer) (e-Journal)
Vol 4, No 2 (2017)

SELEKSI ATRIBUT PADA ALGORITMA C4.5 MENGGUNAKAN GENETIK ALGORITMA DAN BAGGING UNTUK ANALISA KELAYAKAN PEMBERIAN KREDIT

Saeful Bahri (STMIK Nusamandiri)



Article Info

Publish Date
28 Sep 2017

Abstract

According to the banking ACT No. 9 of 1992 is the provision of credit or money bills which can dipersama-kan with it, based on the approval of an agreement between the bank pinjam-meminjam with other parties that require that the borrower to pay off a loan after a certain period of time with the giving of flowers. Credit analysis aims to evaluate the customer able to or not in fulfilling obligations. In analyzing the sometimes an analyst is not accurate in analyzing causing bad credit. Of the problems that existed then used a method of classification for an analysis of the feasibility of granting credit using a model algorithm Genetic Algorithm with C4.5 (AG) as a selection of attributes and bagging method to improve accuracy. After testing two models namely algorithm C4.5 and C4.5 with Genetic Algorithms (AG) and the results obtained bagging method is the algorithm C 4.5 produces a value accuracy 93,47% and AUC values 0,932 with excellent levels of Clasification diagnose but after Genetic Algorithm added (AG) and increased accuracy value bagging 2.87% to 96,34% and AUC values increased 0.044 became 0.976.Keywords: Credit, the algorithm C 4.5, Genetic Algorithms (GA), BaggingMenurut UU Perbankan No.9 Tahun 1992 kredit merupakan penyediaan uang  atau tagihan yang dapat dipersama-kan dengan itu,  berdasarkan  persetujuan  atau  kesepakatan  pinjam-meminjam  antara  bank  dengan  pihak  lain  yang  mewajibkan  pihak  peminjam  untuk  melunasi  utangnya setelah jangka waktu tertentu dengan pemberian bunga. Analisa kredit bertujuan untuk mengevaluasi nasabah mampu atau tidak dalam memenuhi kewajiban. Dalam menganalisa terkadang seorang analis tidak akurat dalam menganalisa sehingga menyebabkan kredit macet. Dari permasalahan yang ada maka digunakan sebuah metode klasifikasi untuk analisis kelayakan pemberian kredit menggunakan model algoritma C4.5 dengan Algoritma Genetika (AG) sebagai seleksi atribut dan metode bagging untuk meningkatkan akurasi. Setelah dilakukan pengujian dua model yaitu algoritma C4.5 dan C4.5 dengan Algoritma Genetika (AG) dan metode bagging hasil yang diperoleh adalah algoritma C4.5 menghasilkan nilai akurasi 93,47 % dan nilai AUC 0,932 dengan tingkat diagnose excellent Clasification namun setelah ditambahkan Algoritma Genetika(AG) dan bagging nilai akurasi meningkat 2,87% menjadi 96,34 % dan nilai AUC meningkat 0.044 menjadi 0.976.Kata kunci: Kredit, Algoritma C4.5, Algoritma Genetika (AG), Bagging

Copyrights © 2017






Journal Info

Abbrev

klik

Publisher

Subject

Computer Science & IT

Description

KLIK Scientific Journal, is a computer science journal as source of information in the form of research, the study of literature, ideas, theories and applications in the field of critical analysis study Computer Science, Data Science, Artificial Intelligence, and Computer Network, published two ...