TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 19, No 3: June 2021

Parallel classification and optimization of telco trouble ticket dataset

Fauzy Bin Che Yayah (Multimedia University)
Khairil Imran Ghauth (Multimedia University)
Choo-Yee Ting (Multimedia University)



Article Info

Publish Date
01 Jun 2021

Abstract

In the big data age, extracting applicable information using traditional machine learning methodology is very challenging. This problem emerges from the restricted design of existing traditional machine learning algorithms, which do not entirely support large datasets and distributed processing. The large volume of data nowadays demands an efficient method of building machine-learning classifiers to classify big data. New research is proposed to solve problems by converting traditional machine learning classification into a parallel capable. Apache Spark is recommended as the primary data processing framework for the research activities. The dataset used in this research is related to the telco trouble ticket, identified as one of the large volume datasets. The study aims to solve the data classification problem in a single machine using traditional classifiers such as W-J48. The proposed solution is to enable a conventional classifier to execute the classification method using big data platforms such as Hadoop. This study’s significant contribution is the output matrix evaluation, such as accuracy and computational time taken from both ways resulting from hyper-parameter tuning and improvement of W-J48 classification accuracy for the telco trouble ticket dataset. Additional optimization and estimation techniques have been incorporated into the study, such as grid search and cross-validation method, which significantly improves classification accuracy by 22.62% and reduces the classification time by 21.1% in parallel execution inside the big data environment.

Copyrights © 2021






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...