TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 15, No 4: December 2017

Embedded Applications of MS-PSO-BP on Wind/Storage Power Forecasting

Jianhong Zhu (HoHai University Nantong University, China)
Wen-xia Pan (Nantong University, China)
Zhi-ping Zhang (Jiangsu Longyuan Wind Power Co., Ltd, China)



Article Info

Publish Date
01 Dec 2017

Abstract

Higher proportion wind power penetration has great impact on grid operation and dispatching, intelligent hybrid algorithm is proposed to cope with inaccurate schedule forecast. Firstly, hybrid algorithm of MS-PSO-BP (Mathematical Statistics, Particle Swarm Optimization, Back Propagation neural network) is proposed to improve the wind power system prediction accuracy. MS is used to optimize artificial neural network training sample, PSO-BP (particle swarm combined with back propagation neural network) is employed on prediction error dynamic revision. From the angle of root mean square error (RMSE), the mean absolute error (MAE) and convergence rate, analysis and comparison of several intelligent algorithms (BP, RBP, PSO-BP, MS-BP, MS-RBP, MS-PSO-BP) are done to verify the availability of the proposed prediction method. Further, due to the physical function of energy storage in improving accuracy of schedule pre-fabrication, a mathematical statistical method is proposed to determine the optimal capacity of the storage batteries in power forecasting based on the historical statistical data of wind farm. Algorithm feasibility is validated by application of experiment simulation and comparative analysis.

Copyrights © 2017






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...