TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 13, No 1: March 2015

A Self-Adaptive Chaos Particle Swarm Optimization Algorithm

Yalin Wu (Jiangxi University of Science and Technology, Ganzhou)
Shuiping Zhang (Jiangxi University of Science and Technology, Ganzhou)



Article Info

Publish Date
01 Mar 2015

Abstract

As a new evolutionary algorithm, particle swarm optimization (PSO) achieves integrated evolution through the information between the individuals. All the particles have the ability to adjust their own speed and remember the optimal positions they have experienced. This algorithm has solved many practical engineering problems and achieved better optimization effect. However, PSO can easily get trapped in local extremum, making it fail to get the global optimal solution and reducing its convergence speed. To settle these deficiencies, this paper has proposed an adaptive chaos particle swarm optimization (ACPSO) based on the idea of chaos optimization after analyzing the basic principles of PSO. This algorithm can improve the population diversity and the ergodicity of particle search through the property of chaos; adjust the inertia weight according to the premature convergence of the population and the individual fitness; consider the global optimization and local optimization; effectively avoid premature convergence and improve algorithm efficiency. The experimental simulation has verified its effectiveness and superiority.

Copyrights © 2015






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...