TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 11, No 4: December 2013

De-noising of Power Quality Disturbance Detection Based on Ensemble Empirical Mode Decomposition Threshold Algorithm

Zhang Xuhong (Ningxia Polytechnic)
Han Gang Han Gang (China University of Mining and Technology)
Chen Liping (China University of Mining and Technology)



Article Info

Publish Date
01 Dec 2013

Abstract

Actual power quality signal which is often affected by noise pollution impacts the analysis results of the disturbance signal. In this paper, EEMD (Ensemble Empirical Mode Decomposition)-based threshold de-noising method is proposed for power quality signal with different SNR (Signal-to-Noise Ratio). As a comparison, we use other four thresholds, namely, the heuristic threshold, the self-adaptive threshold, the fixed threshold and the minimax threshold to filter the noises from power quality signal. Through the analysis and comparison of three characteristics of the signal pre-and-post de-noised, including waveforms, SNR and MSE (Mean Square Error), furthermore the instantaneous attribute of corresponding time by HHT (Hilbert Huang Transform). Simulation results show that EEMD threshold de-noising method can make the waveform close to the actual value. The SNR is higher and the MSE is smaller compared with other four thresholds. The instantaneous attribute can reflect the actual disturbance signal more exactly. The optimal threshold EEMD-based algorithm is proposed for power quality disturbance signal de-noising. Meanwhile, EEMD threshold de-noising method with adaptivity is suitable for composite disturbance signal de-noising.

Copyrights © 2013






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...