TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 18, No 3: June 2020

Convolutional neural network for maize leaf disease image classification

Mohammad Syarief (University of Trunojoyo Madura)
Wahyudi Setiawan (University of Trunojoyo Madura)



Article Info

Publish Date
01 Jun 2020

Abstract

This article discusses the maize leaf disease image classification. The experimental images consist of 200 images with 4 classes: healthy, cercospora, common rust and northern leaf blight. There are 2 steps: feature extraction and classification. Feature extraction obtains features automatically using convolutional neural network (CNN). Seven CNN models were tested i.e AlexNet, virtual geometry group (VGG) 16, VGG19, GoogleNet, Inception-V3, residual network 50 (ResNet50) and ResNet101. While the classification using machine learning methods include k-Nearest neighbor, decision tree and support vector machine. Based on the testing results, the best classification was AlexNet and support vector machine with accuracy, sensitivity, specificity of 93.5%, 95.08%, and 93%, respectively.

Copyrights © 2020






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...