TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 18, No 3: June 2020

A new model for large dataset dimensionality reduction based on teaching learning-based optimization and logistic regression

Hind Raad Ibraheem (Al Salam University College)
Zahraa Faiz Hussain (Al Salam University College)
Sura Mazin Ali (Mustansiriyah University)
Mohammad Aljanabi (Aliraqia University)
Mostafa Abdulghafoor Mohammed (University Polytechnic of Bucharest)
Tole Sutikno (Universitas Ahmad Dahlan)



Article Info

Publish Date
01 Jun 2020

Abstract

One of the human diseases with a high rate of mortality each year is breast cancer (BC). Among all the forms of cancer, BC is the commonest cause of death among women globally. Some of the effective ways of data classification are data mining and classification methods. These methods are particularly efficient in the medical field due to the presence of irrelevant and redundant attributes in medical datasets. Such redundant attributes are not needed to obtain an accurate estimation of disease diagnosis. Teaching learning-based optimization (TLBO) is a new metaheuristic that has been successfully applied to several intractable optimization problems in recent years. This paper presents the use of a multi-objective TLBO algorithm for the selection of feature subsets in automatic BC diagnosis. For the classification task in this work, the logistic regression (LR) method was deployed. From the results, the projected method produced better BC dataset classification accuracy (classified into malignant and benign). This result showed that the projected TLBO is an efficient features optimization technique for sustaining data-based decision-making systems.

Copyrights © 2020






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...