TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 17, No 6: December 2019

An adaptive clustering and classification algorithm for Twitter data streaming in Apache Spark

Raed A. Hasan (Noerthern Technical University)
Royida A. Ibrahem Alhayali (University of Diyala)
Nashwan Dheyaa Zaki (College of Engineering)
Ahmed Hussien Ali (AL Salam University)



Article Info

Publish Date
01 Dec 2019

Abstract

On-going big data from social networks sites alike Twitter or Facebook has been an entrancing hotspot for investigation by researchers in current decades as a result of various aspects including up-to-date-ness, accessibility and popularity; however anyway there may be a trade off in accuracy. Moreover, clustering of twitter data has caught the attention of researchers. As such, an algorithm which can cluster data within a lesser computational time, especially for data streaming is needed. The presented adaptive clustering and classification algorithm is used for data streaming in Apache spark to overcome the existing problems is processed in two phases. In the first phase, the input pre-processed twitter data is viably clustered utilizing an Improved Fuzzy C-means clustering and the proposed clustering is additionally improved by an Adaptive Particle swarm optimization (PSO) algorithm. Further the clustered data streaming is assessed utilizing spark engine. In the second phase, the input pre-processed Higgs data is classified utilizing the modified support vector machine (MSVM) classifier with grid search optimization. At long last the optimized information is assessed in spark engine and the assessed esteem is utilized to discover an accomplished confusion matrix. The proposed work is utilizing Twitter dataset and Higgs dataset for the data streaming in Apache Spark. The computational examinations exhibit the superiority ofpresented approach comparing with the existing methods in terms of precision, recall, F-score, convergence, ROC curve and accuracy.

Copyrights © 2019






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...