TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 16, No 1: February 2018

Estimating Parameter of Nonlinear Bias Correction Method Using NSGA-II in Daily Precipitation Data

Angga Wahyu Pratama (Bogor Agricultural University)
Agus Buono (Bogor Agricultural University)
Rahmat Hidayat (Bogor Agricultural University)
Hastuadi Harsa (Bogor Agricultural University)



Article Info

Publish Date
01 Feb 2018

Abstract

Nonlinear (NL) method is the most effective bias correction method for correcting statistical bias when observation precipitation data can not be approximated using gamma distribution. Since NL method only adjusts mean and variance, it does not perform well in handling bias on quantile values. This paperpresents a scheme of NL method with additional condition aiming to mitigate bias on quantile values. Non-dominated Sorting Genetic Algorithm II (NSGA-II) was applied to estimate parameter of NL method. Furthermore, to investigate suitability of application of NSGA-II, we performed Single Objective Genetic Algorithm (SOGA) as a comparison. The experiment results revealed NSGA-II was suitable when solution of SOGA produced low fitness. Application of NSGA-II could minimize impact of daily bias correction on monthly precipitation. The proposed scheme successfully reduced biases on mean, variance, first and second quantile However, biases on third and fourth moment could not be handled robustly while biases on third quantile only reduced during dry months.

Copyrights © 2018






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...