TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 12, No 4: December 2014

Process Improvement of LSA for Semantic Relatedness Computing

Wujian Yang (Zhejiang University City College)
Lianyue Lin (Zhejiang University City College)



Article Info

Publish Date
01 Dec 2014

Abstract

Tang poetry semantic correlation computing is critical in many applications, such as searching, clustering, automatic generation of poetry and so on. Aiming to increase computing efficiency and accuracy of semantic relatedness, we improved the process of latent semantic analysis (LSA). In this paper, we adopted “representation of words semantic” instead of “words-by-poems” to represent the words semantic, which based on the finding that words having similar distribution in poetry categories are almost always semantically related. Meanwhile, we designed experiment which obtained segmentation words from more than 40000 poems, and computed relatedness by cosine value which calculated from decomposed co-occurrence matrix with Singular Value Decomposition (SVD) method. The experimental result shows that this method is good to analyze semantic and emotional relatedness of words in Tang poetry. We can find associated words and the relevance of poetry categories by matrix manipulation of the decomposing matrices as well.

Copyrights © 2014






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...