TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 12, No 4: December 2014

Review of Local Descriptor in RGB-D Object Recognition

Ema Rachmawati (Bandung Institute of Technology)
Iping Supriana Suwardi (Bandung Institute of Technology)
Masayu Leylia Khodra (Bandung Institute of Technology)



Article Info

Publish Date
01 Dec 2014

Abstract

The emergence of an RGB-D (Red-Green-Blue-Depth) sensor which is capable of providing depth and RGB images gives hope to the computer vision community. Moreover, the use of local features began to increase over the last few years and has shown impressive results, especially in the field of object recognition. This article attempts to provide a survey of the recent technical achievements in this area of research. We review the use of local descriptors as the feature representation which is extracted from RGB-D images, in instances and category-level object recognition. We also highlight the involvement of depth images and how they can be combined with RGB images in constructing a local descriptor. Three different approaches are used in involving depth images into compact feature representation, that is classical approach using distribution based, kernel-trick, and feature learning. In this article, we show that the involvement of depth data successfully improves the accuracy of object recognition.

Copyrights © 2014






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...