TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 16, No 4: August 2018

Semi-Supervised Keyphrase Extraction on Scientific Article using Fact-based Sentiment

Felix Christian Jonathan (Maranatha Christian University)
Oscar Karnalim (Maranatha Christian University)



Article Info

Publish Date
01 Aug 2018

Abstract

Most scientific publishers encourage authors to provide keyphrases on their published article. Hence, the need to automatize keyphrase extraction is increased. However, it is not a trivial task considering keyphrase characteristics may overlap with the non-keyphrase’s. To date, the accuracy of automatic keyphrase extraction approaches is still considerably low. In response to such gap, this paper proposes two contributions. First, a feature called fact-based sentiment is proposed. It is expected to strengthen keyphrase characteristics since, according to manual observation, most keyphrases are mentioned in neutral-to-positive sentiment. Second, a combination of supervised and unsupervised approach is proposed to take the benefits of both approaches. It will enable automatic hidden pattern detection while keeping candidate importance comparable to each other. According to evaluation, fact-based sentiment is quite effective for representing keyphraseness and semi-supervised approach is considerably effective to extract keyphrases from scientific articles.

Copyrights © 2018






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...