TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 13, No 4: December 2015

A Sparse Representation Image Denoising Method Based on Orthogonal Matching Pursuit

Xiaojun Yu (Jiangsu University of Technology)
Defa Hu (Hunan University of Commerce)



Article Info

Publish Date
01 Dec 2015

Abstract

Image denoising is an important research aspect in the field of digital image processing, and sparse representation theory is also one of the research focuses in recent years. The sparse representation of the image can better extract the nature of the image, and use a way as concise as possible to express the image. In image denoising based on sparse representation, the useful information of the image possess certain structural features, which match the atom structure. However, noise does not possess such property, therefore, sparse representation can effectively separate the useful information from noise to achieve the purpose of denoising. Aiming at image denoising problem of low signal-to-noise ratio (SNR) image, combined with Orthogonal Matching Pursuit and sparse representation theory, this paper puts forward an image denoising method. The experiment shows that compared with the traditional image denoising based on Symlets, image denoising based on Contourlet transform, this method can delete noise in low SNR image and keep the useful information in the original image more efficiently.

Copyrights © 2015






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...