TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 18, No 1: February 2020

i-Eclat: performance enhancement of eclat via incremental approach in frequent itemset mining

Wan Aezwani Wan Abu Bakar (Universiti Sultan Zainal Abidin)
Mustafa Man (Universiti Malaysia Terengganu)
Mahadi Man (Universiti Malaysia Terengganu)
Zailani Abdullah (Universiti Malaysia Kelantan)



Article Info

Publish Date
01 Feb 2020

Abstract

One example of the state-of-the-art vertical rule mining technique is called equivalence class transformation (Eclat) algorithm. Neither horizontal nor vertical data format, both are still suffering from the huge memory consumption. In response to the promising results of mining in a higher volume of data from a vertical format, and taking consideration of dynamic transaction of data in a database, the research proposes a performance enhancement of Eclat algorithm that relies on incremental approach called an Incremental-Eclat (i-Eclat) algorithm. Motivated from the fast intersection in Eclat, this algorithm of performance enhancement adopts via my structured query language (MySQL) database management system (DBMS) as its platform. It serves as the association rule mining database engine in testing benchmark frequent itemset mining (FIMI) datasets from online repository. The MySQL DBMS is chosen in order to reduce the preprocessing stages of datasets. The experimental results indicate that the proposed algorithm outperforms the traditional Eclat with 17% both in chess and T10I4D100K, 69% in mushroom, 5% and 8% in pumsb_star and retail datasets. Thus, among five (5) dense and sparse datasets, the average performance of i-Eclat is concluded to be 23% better than Eclat.

Copyrights © 2020






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...