TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 15, No 1: March 2017

A Framework for Classifying Indonesian News Curator in Twitter

Jaka E. Sembodo (Telkom University)
Erwin B. Setiawan (Telkom University)
ZK A. Baizal (Telkom University)



Article Info

Publish Date
01 Mar 2017

Abstract

News curators in twitter are a user, which is interested in following, spreading, giving feedback of recent popular articles. There are two kinds of this user, news curator as human user and news aggregator as bot user. In prior works about news curator, the classification system built using followers, URL, mention and retweet feature. However, there are limited prior works for classifiying Indonesian News Curator in twitter and still hard for labelling data involve just two features: followers and URL. In this paper, we proposed a framework for classifying Indonesian news curator in twitter using Naïve Bayes Classifier (NBC) and added features such as location, bio profile, and common tweet. Another purpose for analysing the influential features of certain class, so its make easier for labelling data of this role in the future. Examination result using percentage split as evaluating system produced 87% accuracy. The most influential features for news curator are followers, bio profile, mention and retweet. For news aggregator class are followers, location, and URL. The rest just common tweet feature for not both class. We implemented Feature Subset Selection (FSS) for increasing system performance and avoiding the over fitting data, it has produced 92.90% accuracy.

Copyrights © 2017






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...