TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 15, No 2: June 2017

Predicting the Level of Emotion by Means of Indonesian Speech Signal

Fergyanto E. Gunawan (Bina Nusantara University)
Kanyadian Idananta (Bina Nusantara University)



Article Info

Publish Date
01 Jun 2017

Abstract

Understanding human emotion is of importance for developing better and facilitating smooth interpersonal relations. It becomes much more important because human thinking process and behavior are strongly influenced by the emotion. Align with these needs, an expert system that capable of predicting the emotion state would be useful for many practical applications. Based on a speech signal, the system has been widely developed for various languages. This study intends to evaluate to which extent Mel-Frequency Cepstral Coefficients (MFCC) features, besides Teager energy feature, derived from Indonesian speech signal relates to four emotional types: happy, sad, angry, and fear. The study utilizes empirical data of nearly 300 speech signals collected from four amateur actors and actresses speaking 15 prescribed Indonesian sentences. Using support vector machine classifier, the empirical findings suggest that the Teager energy, as well as the first coefficient of MFCCs, are a crucial feature and the prediction can achieve the accuracy level of 86%. The accuracy increases quickly with a few initial MFCC features. The fourth and more features have negligible effects on the accuracy.

Copyrights © 2017






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...